

# Panasonic

# PURIFY YOUR AIR WITH **A SMART PURIFIER**

# Panasonic

#### Panasonic Life Solutions India Pvt. Ltd.

3rd Floor, B Wing, i Think Techno Campus, Pokhran Road No-2, Thane (West), Thane - 400 607, Maharashtra, India. Tel: 022-42228888, 022-62838888



Catalogue 2024

# AGENDA

ABOUT THE VENTILATION

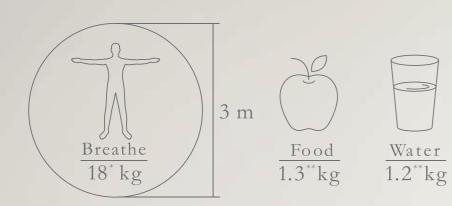
CEILING MOUNT VENTILATION FAN

ERV

AIR-E

CASE STUDY

PRICE LIST






47

# HEALTHY AIR SOLUTIONS **QUALITY AIR FOR LIFE**

No matter where you go on planet Earth, 24 hours a day, 365 days a year, air is an essential part of your life. By incorporating air conditioning and ventilation technologies, we help you enjoy fresher air that contributes to the health of both body and mind as well as a more comfortable life overall. Leveraging all of the technologies we have developed to date, we're working to help every person in the world enjoy better health and comfort through Quality Air for Life.



and the second second second

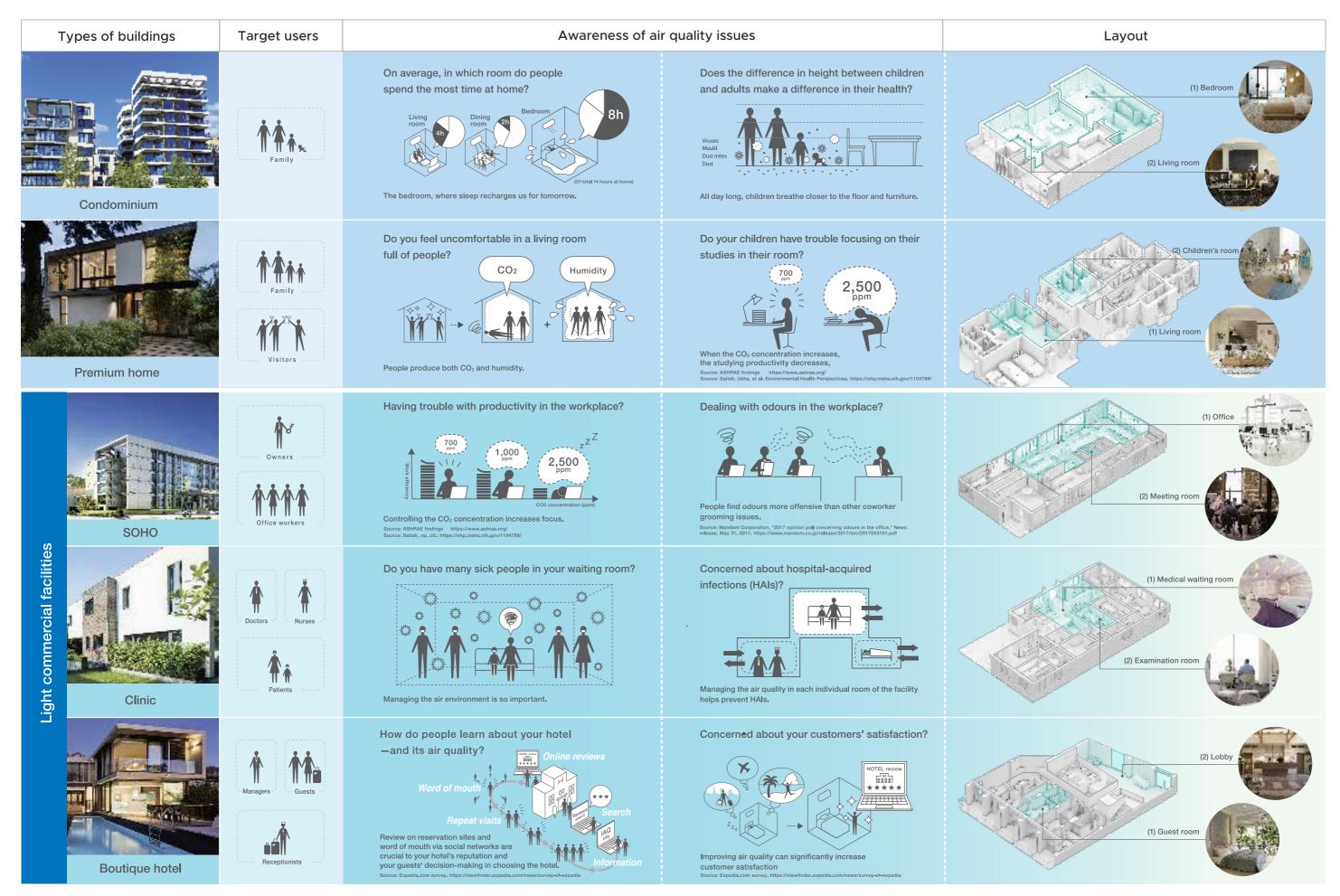
526

\*Uchiyama, Iwao (Department of Occupational Health, National Institute of Public Health, Japan). "Air and Human Beings: from the Physiological Viewpoint" (1999). https://ci.nii.ac.jp/naid/110008447936/ \*\*Ministry of the Environment, Japan. Heat Illness Environmental Health Manual 2018, p. 32, fig. 3-2. http://www.wbgt.env.go.jp/pdf/manual/heatillness\_manual\_3-1.pdf

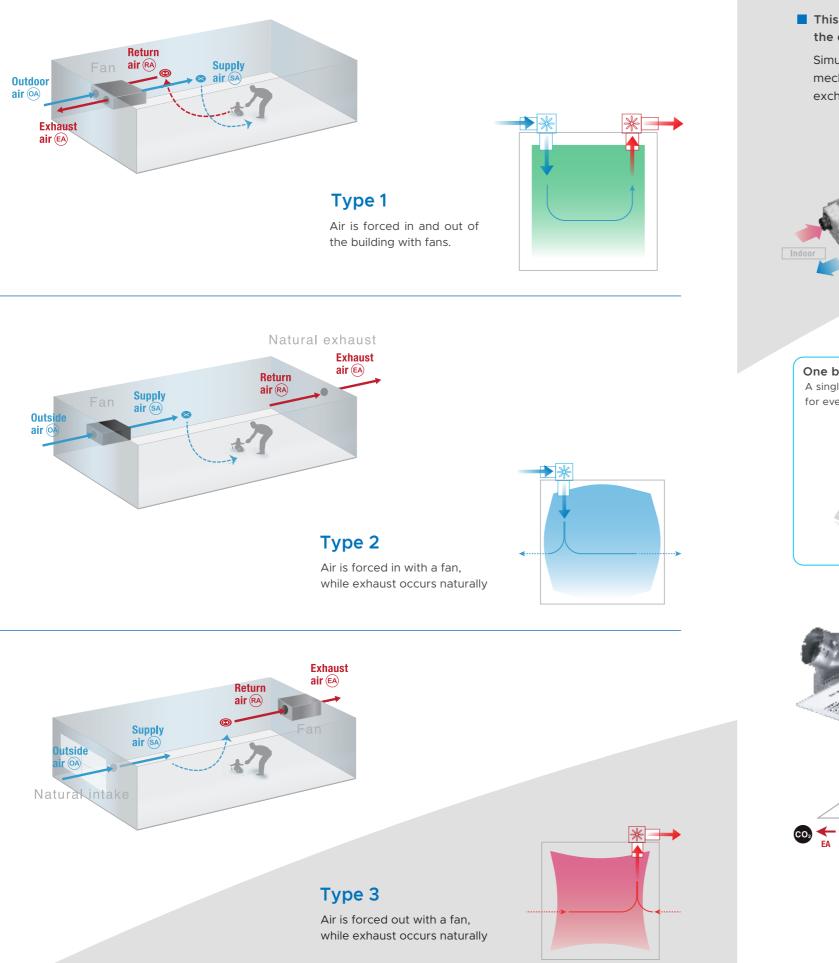


#### Each one of us breathes in 18 kg of air a day.

#### Outdoor air environments


13-

Even though you can't see it, the air in your home and other indoor environments can easily get dirty. Polluted air flows in unnoticed from the outside, and chemicals are emitted by wood and furniture. Also  $CO_2$  concentration rises as people breathe, while the humidity level increases as perspiration evaporates. All those factors will gradually make the room less comfortable. CO

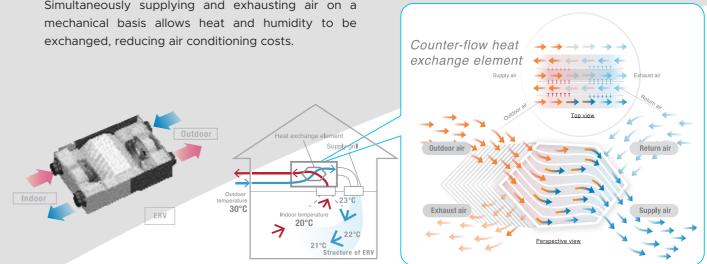

, VOCs



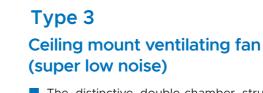
# **Solutions Overview**



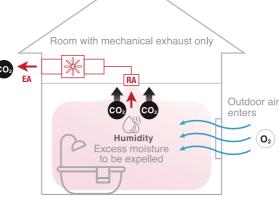
## **TYPES OF VENTILATION**




#### Type 1


#### Energy recovery ventilator (ERV)

This energy-efficient ventilation method minimises the energy lost in air conditioning.


Simultaneously supplying and exhausting air on a



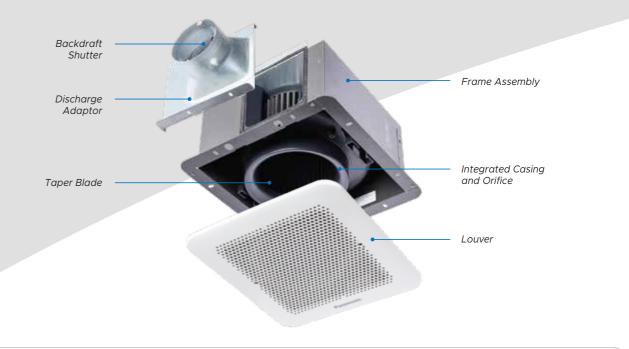




environment.



The distinctive double-chamber structure minimises the transmission of fan and motor noise and motor to the exterior. This technology further reduces operation noise to incredibly low levels that are below 30dB(A), for a tranquil, quiet living




This is system often used in bathrooms and kitchens

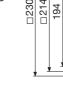
# LIVING IN FRESH ENVIRONMENT

# **Ceiling Mount Ventilation Fan**

Advance design to minimize noise & achieve lowest power consumpion

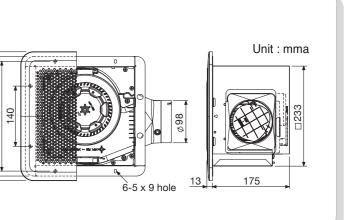


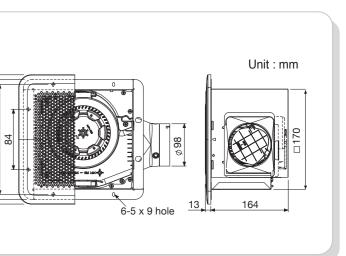
### FV-24CU9


- HP (half pitch) motor with ball bearing
- Taper blade sirocco fan
- Curve-shapeda backdraft shutter
- Super low noise level

# □ 300 □ 278 255

#### FV-17CU9

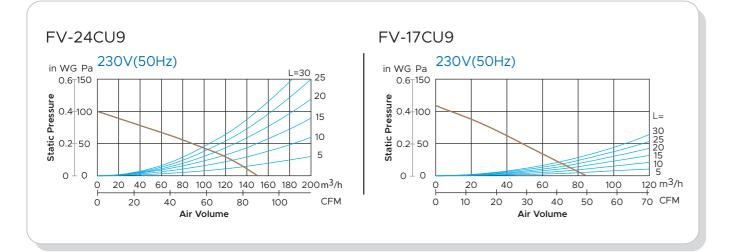

- HP (half pitch) motor with ball bearing
- Taper blade sirocco fan
- Curve-shaped backdraft shutter
- Super low noise level


•



# Ventilation Fan

ii.






# **Ceiling Mount Ventilation Fan**



### **Performance Data**



### **Specification**

| Model No. | Vol | tage       | Air Vo              | olume | Consumption | Noise    | Weight    | Installation Space | Duct Size |   |
|-----------|-----|------------|---------------------|-------|-------------|----------|-----------|--------------------|-----------|---|
| Model No. | [V] | [Hz]       | [m <sup>3</sup> /h] | [CFM] | [W]         | [dB (A)] | [kg]      | [mm]               | [mm]      |   |
| FV-24CU9  | 230 | 50         | 150                 | 88    | 11          | 26       | 2.7       | 240 x 240          | ø 100     | ] |
| FV-17CU9  | 230 | 0 50 85 50 |                     | 8.5   | 24.5        | 1.7      | 177 x 177 | ø 100              | 1         |   |

#### Note :

• The value of power consumption, air volume and noise are specified at the static pressure of 0 Pa

• The value of air volume is the mean value measured by our company.

The values of noise level is the average of three values measured at Im apart from left, right and directly beneath the product.

• The values of noise level is the mean of A weighted average sound pressure level measured by our company.

# Wall Mount Ventilation Fan



# **Speedy Odour Exhaustion**

Foul smell can be quite noticeable after using the toilet. This unpleasant odour can stay without good ventilation. Panasonic ventilating fan can exhaust smelly air to resume a fresh comfortable room.

### **Excess Moisture Removal**

•



Excess moisture in your bathroom creates conditions for molds to grow. This may deteriorate the room interior and cause potential threats to health. Panasonic ventilating fan can remove moist air to prevent these potential risks.

# **Specification**

| Model     | Voltage<br>[V] | Frequency<br>[Hz] | Air Volume<br>[CMH] | Consumption<br>[W] | Noise<br>[dB(A)] | Speed<br>[RPM] | Wall Installation<br>Wooden Frame<br>Size [mm] | Ceiling Installation<br>Hole Size [mm] | Net<br>Weight<br>[kg] |
|-----------|----------------|-------------------|---------------------|--------------------|------------------|----------------|------------------------------------------------|----------------------------------------|-----------------------|
| FV-10EGD2 | 230            | 50                | 82                  | 4.6                | 34.0             | 2,680          | □120-130                                       | Ø130~140                               | 0.8                   |
| FV-15EGD2 | 230            | 50                | 170                 | 6.0                | 37.0             | 2,250          | □ 165-175                                      | Ø175~185                               | 0.9                   |

#### Note:

• The value of power consumption, air volume and noise are specified at the static pressure of 0 Pa.

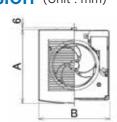
• The value of air volume is the mean value which is measured by our company.

• The value of noise level is measured at 1m apart from the left, the right and the directly below of product, then get the average of three values.

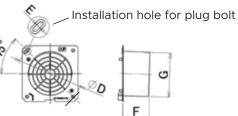
• The value of noise level is A weight average sound pressure level, the mean value is measured by our company.

14

#### **Duct Series**


 Low noise level Low energy consumption Back duct with grill equipped Easy installation Safety / Thermal Fuse




#### **Compact & Stylish**



#### All accessories included **Dimension** (Unit : mm)







Installation hole (Ø6) for plug bolt

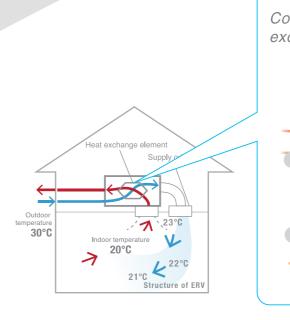
| Model     | Α   | В   | С  | D   | Е | F  | G   |
|-----------|-----|-----|----|-----|---|----|-----|
| FV-10EGD2 | 176 | 170 | 83 | 177 | 6 | 87 | 111 |
| FV-15EGD2 | 230 | 220 | 86 | 231 | 6 | 89 | 155 |

<sup>-</sup> Actual colors may vary slightly from shown. - Specifications are subject to change without prior notice.

# ENERGY RECOVERY **VENTILATOR**

#### **One-Stop EPO IAQ Solution**

- Energy Saving
- Air Purification
- Thermal Comfort




# Type 1

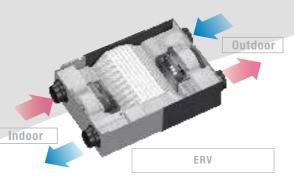
### **Energy recovery ventilator (ERV)**

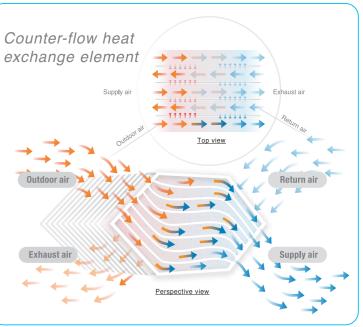
This energy-efficient ventilation method minimises the energy lost in air conditioning.

Simultaneously supplying and exhausting air on a mechanical basis allows heat and humidity to be exchanged, reducing air conditioning costs.



# of mould spores, pollen, etc.


spores and pollen.




Note: For nanoe™ Technology information, please refer to page 60-62. Results may vary based on usage, and seasonal and environmental variables (temperature and humidity). nanoe™ and nanoe™ X inhibit activity or growth of viruses, but do not prevent infection. Deodorisation effect varies according to the environment (temperature and humidity), operation time, odour, and fabric types. It does not remove toxic substances in cigarettes (carbon monoxide, etc.). Odours that are continuously generated (e.g., building material odours and pet odors) are not completely removed. All images shown are for illustration purpose only.

# **Panasonic**

116





# **Importance Of Ventilation**

Tightly sealed buildings are becoming increasingly common for energy efficiency purpose, reducing energy loss associated with heating and cooling. However, airtight buildings limited ingoing fresh air into the building results in poor indoor quality which adversely affects our health. Adequate ventilation, therefore, plays an essential role in maintaining a healthy living environment.

## Common Issues Triggered by Insufficient Ventilation

#### Commercial



Office area I Stagnant Air



Pantry | Odour

Meeting room | Oxygen Deficiency



Residential

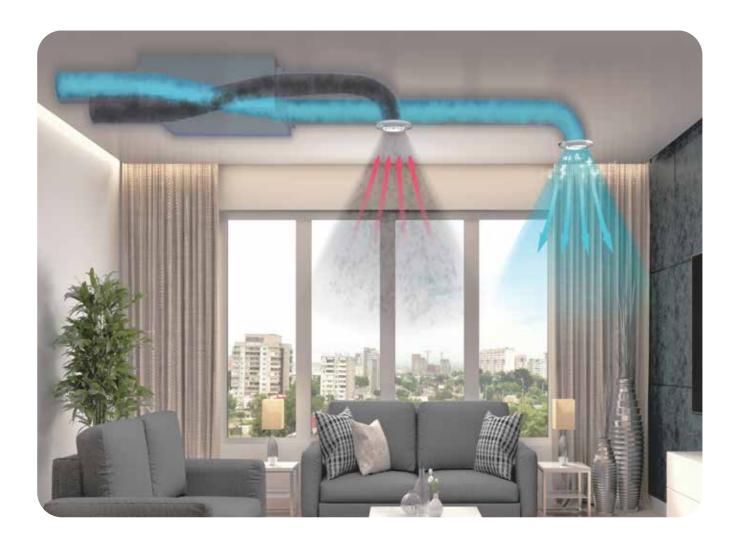


Living room I Stagnant Air



Toilet I Moisture & Smell




Bedroom I Oxygen Deficiency



Kitchen I Odour / Heat

# **ERV As A Modern Solution**

Among various ways of achieving ventilation, the utilization of Energy Recovery Ventilator (ERV) is a modern and effective solution. In different aspects, ERV is able to bring more benefits, comparing to the traditional ventilation method.

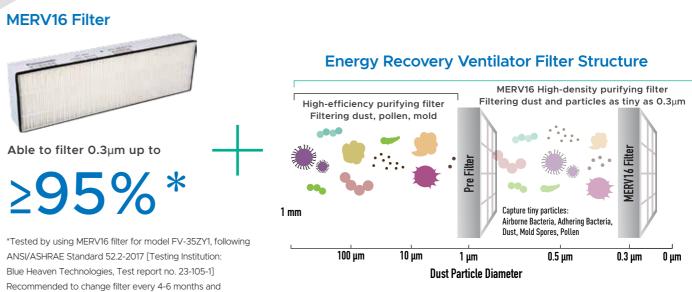


- **Achieve Air Purification** •
- **Increase Comfort Level** •
- Increase Energy Saving

|                            | ERV              | Traditional Ventilation |
|----------------------------|------------------|-------------------------|
| Purification of intake air | 0                | $\triangle$             |
| Stable fresh air intake    | 0                | $\triangle$             |
| Heat exchange              | 0                | $\bigtriangleup$        |
| Equipment cost             | $\bigtriangleup$ | 0                       |
| Maintenance cost           | $\bigtriangleup$ | 0                       |

O Excellent / Available  $\triangle$  Less advantageous **Air Purification** 

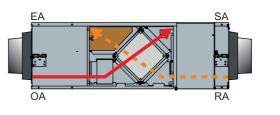
### **Enhanced IAQ**


The Energy Recovery Ventilator draws fresh air from outside while stale indoor air is exhausted. With 24-hour continuous ventilation, Indoor Air Quality (IAQ) is enhanced by exhausting out harmful indoor air contaminants.





# **Efficient Filter**


High-density purifying filter removal of particles as tiny as 0.3µm



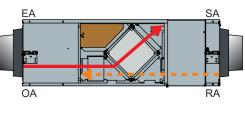
#### **Speedy Bypass Ventilation**

clean every month

Diversion damper is equipped for Bypass Ventilation. When room airflow (RA) is greater than supply airflow (SA), it allows speedy exhaust of indoor polluted air. By using bypass ventilation during season change, it achieves better thermal comfort and energy savings.



[Heat Exchange Mode]


• In heat exchange mode, it pre-cools the hot outdoor air before entering the house. Thus, energy is saved while providing fresh air.





Filter dust and particles as tiny as 0.3µm

**MERV16** Filter

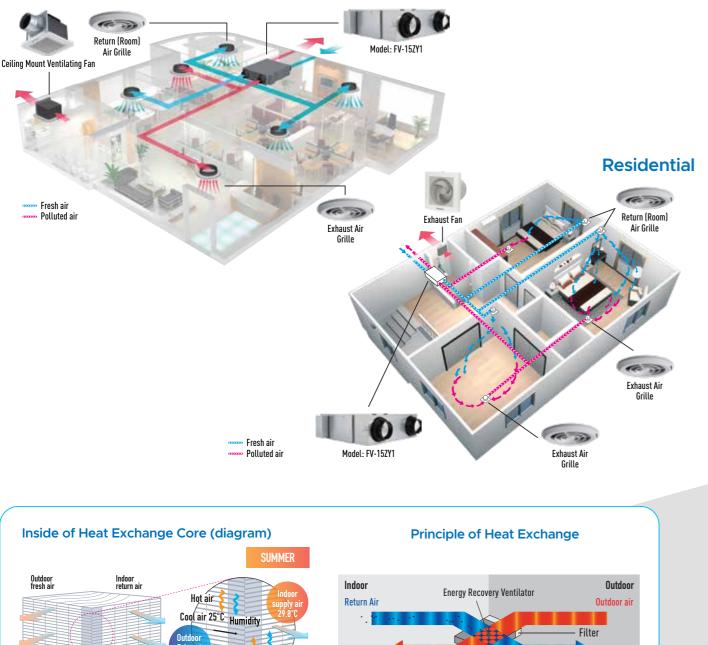


#### [Normal Ventilation Mode]

#### Bypass vertilation

• When outdoor air is highly polluted, it is not recommended to use bypass ventilation. It may cause negative pressure and polluted outdoor air may ingress into the houses through the gaps at the doors and windows.

# Comfort


#### **Optimum Indoor Air Comfort**

An Energy Recovery Ventilator employs energy recovery technology, which uses balanced airflows and recovers otherwise-expended total energy comprised of heat (sensible energy) and humidity (latent energy). Subsequently, less energy is needed for conditioning while maintaining high-level ventilation.

#### **Thermal Comfort**

The newly developed Energy Recovery Ventilator can be interlocked with air conditioning system. It offers balance, humidity control and comfort. Indoor occupants get to enjoy fresh air currents while maintaining optimal temperature.

#### Office



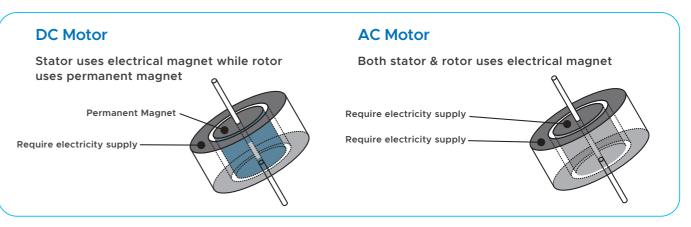
#### **Easy Installation And Maintenance** Slim Design

Installation has never been easier. With the height of only 450mm, Energy Recovery Ventilator is compact to fit into small spaces.

450mn

#### **Flexible Mounting**

Compact design and flexible mounting allow for easy installation in various indoor setting. It can be ceiling-mounted or installed upside-down.




Upside-down Mounted

### Efficiency **Energy And Cost Saving**

#### **Motor Efficiency**

DC (Direct Current) motor is used which consumes less power, thus achieves energy savings. In addition, the temperature rise of DC motor is lower when compared with AC (Alternating Current] motor, which results in longer life expectancy of DC motor.



#### **Dual DC Motors**

Exhaust air

Heat exchange core

#### Dual DC motors achieve energy savings by over 43%\*

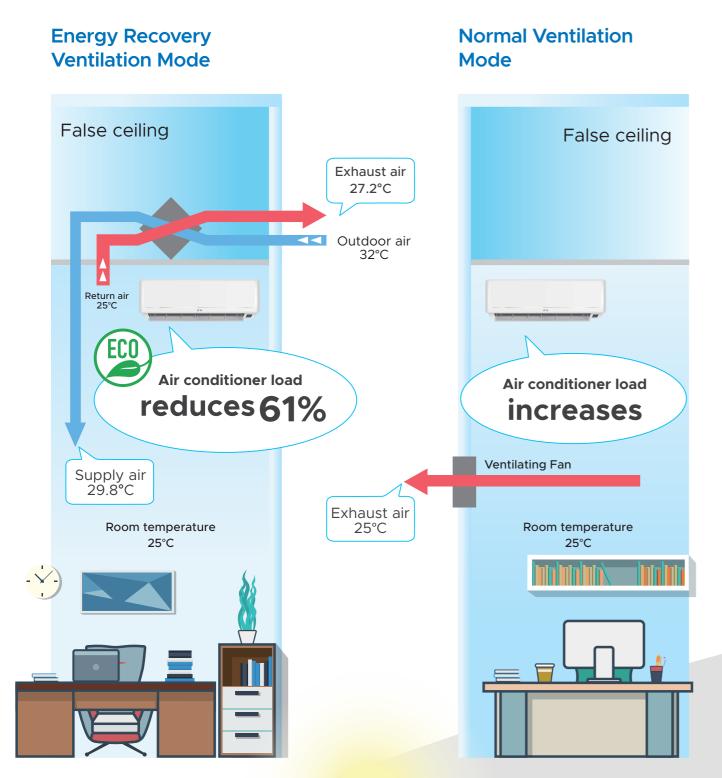
| Motors              | AC Motors | DC Motors | Energy usage |
|---------------------|-----------|-----------|--------------|
| Electricity use (W) | 315       | 180       | -43%         |

\*Comparison between DC model FV-50ZY1 180W vs AC old model (FY-E50DZ1) 315W

Outdoor exhaust air

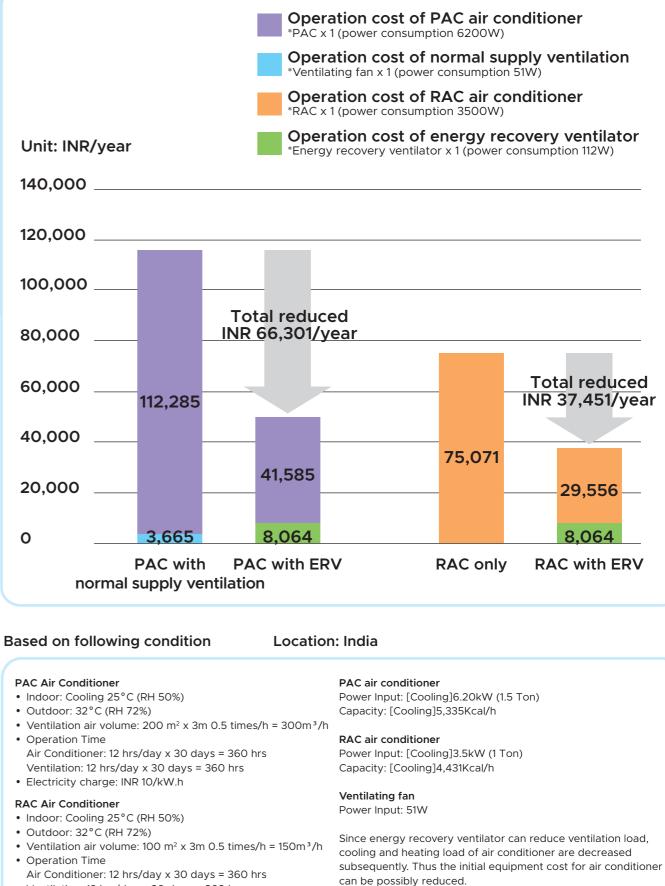
Indoor supply air






# **Energy Efficiency**

Highly efficient Energy Recovery Ventilator reduces energy loss during ventilation, thus achieves energy saving. (Example: FV-15ZY1) Below is an example in summer. By utilizing indoor return cold air to cool down outdoor air before intake to indoor, the indoor cooling effort is significantly reduced.


# **Cost Efficiency**

OPERATING COST COMPARISON WITH OR WITHOUT PANASONIC ENERGY RECOVERY VENTILATOR



### **Summer Time**

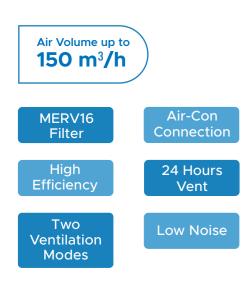
Utilize indoor return air to cool down incoming outdoor air at the heat exchange unit

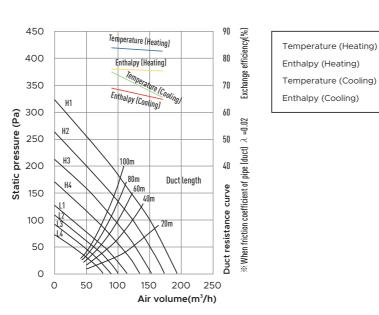


Remark: Calculation was carried out in a controlled environment. Actual result might vary depending on actual environment.

# **Energy Recovery Ventilator FV-15ZY1**

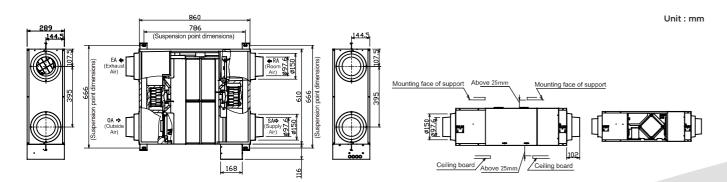






**Replacement Filter** Part No.: FV-FP15ZY1 Cleaning period: once per month Replacement period: every 4 to 6 months



Safety is verified by various standards including IEC (report no. 230106103GZS-001), UKCA (report no. 230106101GZU-001) and CE (report no. 230106101GZU-001) ^UKCA and CE reports are as reference only. They are only applicable to European model FV-15ZY1G.


#### Performance





#### Dimensions

Features



#### Model: FV-15ZY1

| Voltage   | Notch | Static Pressure |        |     | Temperatur<br>Efficier | e Exchange<br>ncy (%) |         | Exchange<br>ncy (%) | Noise<br>(dB(A)) | Applicable duct | Net Weight |
|-----------|-------|-----------------|--------|-----|------------------------|-----------------------|---------|---------------------|------------------|-----------------|------------|
| & Hz      |       | (Pa)            | (m³/h) | (W) | Cooling                | Heating               | Cooling | Heating             |                  | diameter        | (kg)       |
|           | Hi    | 100             | 150    | 80  | 68                     | 83                    | 66      | 76                  | 37               | <i>G</i> 100    | 22         |
| 230V-50Hz | Lo    | 36              | 90     | 30  | 75                     | 84                    | 69      | 76                  | 29               | Ø100            | 23         |

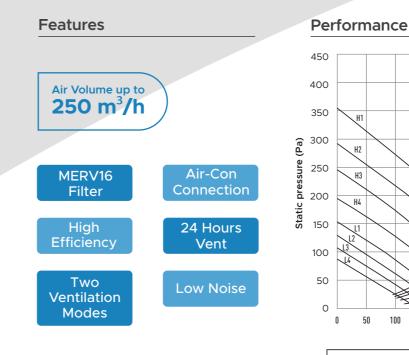
1. The input power and exchange efficiency are the values measured under the standard air volume

2. The above specification are the values measured under the factory set.

3. The power indicated on the name plate is the maximum value under the static pressure of O Pa.

4. The noise is measured 1.5 m directly below the center of the energy recovery ventilator. The noise value of the product is measured in a full anechoic chamber

Under actual conditions, due the impact of ambient sound, the noise value will be greater than the target value. The noise rises by about 1 dB (A) under reverse installation. 5. The air volume in normal ventilation mode is basically the same as the air volume in energy recovery mode.


6. The energy recovery efficiency test should be performed according to the method specified in Appendix 4 of JIS B 8628 (2003). The test environmental conditions should be subject to the winter and summer conditions specified in Table 1 and Table 2 of JIS B 8628 (2017). Other test methods should be subject to JIS B 8628 (2003).

# **Energy Recovery Ventilator FV-25ZY1**





**Replacement Filter** Part No.: FV-FP25ZY1 Cleaning period: once per month Replacement period: every 4 to 6 months



#### Dimensions

Enthalpy (Heating)

# 786 ,144.5

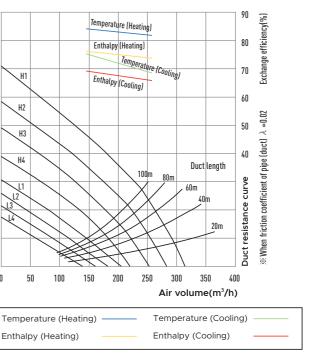
|              |                |                 | - 100  | <del>~ -</del> | 116                      |         |                            |         |                  |                          |                    |  |  |  |  |
|--------------|----------------|-----------------|--------|----------------|--------------------------|---------|----------------------------|---------|------------------|--------------------------|--------------------|--|--|--|--|
| Model: FV-25 | odel: FV-25ZY1 |                 |        |                |                          |         |                            |         |                  |                          |                    |  |  |  |  |
| Voltage      | Notch          | Static Pressure |        | Input Power    | Temperature<br>Efficienc |         | Enthalpy Exe<br>Efficiency |         | Noise<br>(dB(A)) | Applicable duct diameter | Net Weight<br>(kg) |  |  |  |  |
| & Hz         | NOTCH          | (Pa)            | (m³/h) | (W)            | Cooling                  | Heating | Cooling                    | Heating |                  | ulameter                 | (kg)               |  |  |  |  |
| 230V-50Hz    | Hi             | 120             | 250    | 112            | 69                       | 82      | 66                         | 74      | 38               | 0150                     | 27                 |  |  |  |  |
| 2301-20112   | Lo             | 43.5            | 150    | 45             | 75                       | 84      | 69                         | 76      | 28               | Ø150                     | 27                 |  |  |  |  |

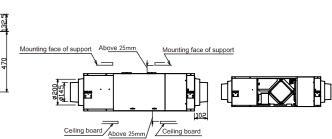
1. The input power and exchange efficiency are the values measured under the standard air volume

2. The above specification are the values measured under the factory set.

3. The power indicated on the name plate is the maximum value under the static pressure of 0 Pa. 4. The noise is measured 1.5 m directly below the center of the energy recovery ventilator. The noise value of the product is measured in a full anechoic chamber

Under actual conditions, due the impact of ambient sound, the noise value will be greater than the target value. The noise rises by about 1 dB (A) under reverse installation.


5. The air volume in normal ventilation mode is basically the same as the air volume in energy recovery mode


6. The energy recovery efficiency test should be performed according to the method specified in Appendix 4 of JIS B 8628 (2003). The test environmental conditions should be





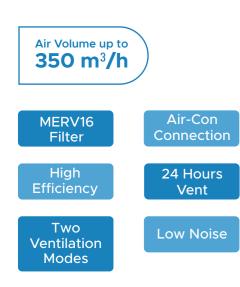
Safety is verified by various standards including IEC (report no. 230106103GZS-001), UKCA (report no. 230106101GZU-001) and CE (report no. 230106101GZU-001) ^UKCA and CE reports are as reference only. They are only applicable to European model FV-25ZY1G.

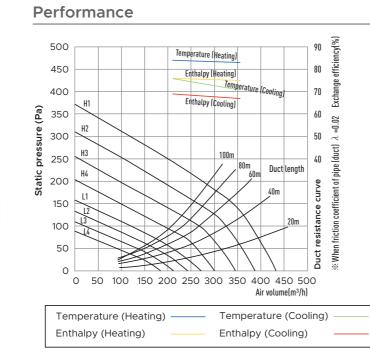




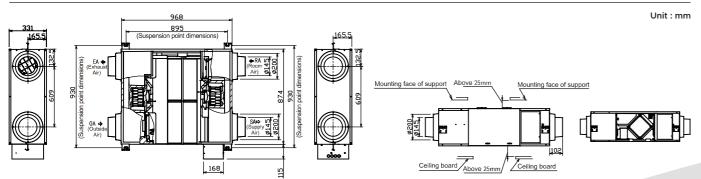
- subject to the winter and summer conditions specified in Table 1 and Table 2 of JIS B 8628 (2017). Other test methods should be subject to JIS B 8628 (2003).

### **Energy Recovery Ventilator FV-35ZY1**




**Replacement Filter** Part No.: FV-FP35ZY1 Cleaning period: once per month Replacement period: every 4 to 6 months


Safety is verified by various standards including IEC (report no. 230106103GZS-001), UKCA (report no. 230106101GZU-001) and CE (report no. 230106101GZU-001) ^UKCA and CE reports are as reference only. They are only applicable to European model FV-35ZY1G.

#### Features





#### Dimensions

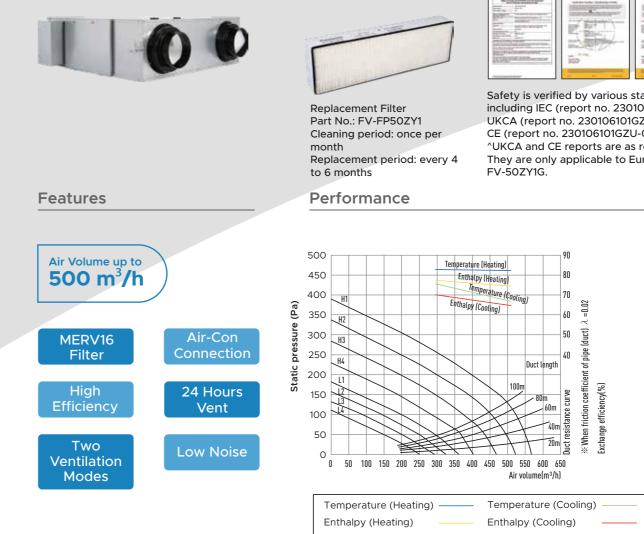


#### Model: FV-35ZY1

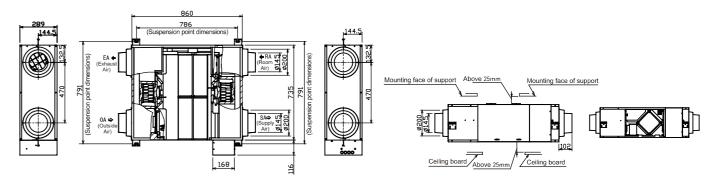
|   | Voltage<br>& Hz | Notch | Static Pressure<br>(Pa) | Air Volume<br>(m³/h) | Input Power<br>(W) |         | e Exchange<br>ncy (%) |         | Exchange<br>ncy (%) | Noise<br>(dB(A)) | Applicable duct diameter | Net Weight<br>(kg) |
|---|-----------------|-------|-------------------------|----------------------|--------------------|---------|-----------------------|---------|---------------------|------------------|--------------------------|--------------------|
|   |                 |       |                         |                      |                    | Cooling | Heating               | Cooling | Heating             |                  | diameter                 | (119)              |
| Γ | 2201/ 5011-     | Hi    | 140                     | 350                  | 149                | 71      | 83                    | 67      | 75                  | 39               | 0150                     | 27                 |
| L | 230V-50Hz       | Lo    | 50.5                    | 210                  | 58                 | 76      | 84                    | 69      | 76                  | 33               | Ø150                     | 37                 |

1. The input power and exchange efficiency are the values measured under the standard air volume

2. The above specification are the values measured under the factory set.


3. The power indicated on the name plate is the maximum value under the static pressure of 0 Pa.

4. The noise is measured 1.5 m directly below the center of the energy recovery ventilator. The noise value of the product is measured in a full anechoic chamber. Under actual conditions, due the impact of ambient sound, the noise value will be greater than the target value. The noise rises by about 1 dB (A) under reverse installation


5. The air volume in normal ventilation mode is basically the same as the air volume in energy recovery mode

6. The energy recovery efficiency test should be performed according to the method specified in Appendix 4 of JIS B 8628 (2003). The test environmental conditions should be subject to the winter and summer conditions specified in Table 1 and Table 2 of JIS B 8628 (2017). Other test methods should be subject to JIS B 8628 (2003)

# **Energy Recovery Ventilator FV-50ZY1**



#### Dimensions



| Model: FV-50    | ZY1   |                         |                      |                    |                                        |         |                                     |         |                  |                          |                    |
|-----------------|-------|-------------------------|----------------------|--------------------|----------------------------------------|---------|-------------------------------------|---------|------------------|--------------------------|--------------------|
| Voltage<br>& Hz | Notch | Static Pressure<br>(Pa) | Air Volume<br>(m³/h) | Input Power<br>(W) | Temperature Exchange<br>Efficiency (%) |         | Enthalpy Exchange<br>Efficiency (%) |         | Noise<br>(dB(A)) | Applicable duct diameter | Net Weight<br>(kg) |
| & Hz            |       | (Pd)                    | (1171)               |                    | Cooling                                | Heating | Cooling                             | Heating |                  | uldifieter               | (rg)               |
|                 | Hi    | 130                     | 500                  | 189                | 65                                     | 81      | 62.5                                | 73      | 43               | <i>a</i> 2000            | 10                 |
| 230V-50Hz       | Lo    | 47                      | 300                  | 76                 | 74                                     | 82      | 68                                  | 76      | 32               | Ø200                     | 40                 |

1. The input power and exchange efficiency are the values measured under the standard air volume.

2. The above specification are the values measured under the factory set.

3. The power indicated on the name plate is the maximum value under the static pressure of 0 Pa.

4. The noise is measured 1.5 m directly below the center of the energy recovery ventilator. The noise value of the product is measured in a full anechoic chamber.

Under actual conditions, due the impact of ambient sound, the noise value will be greater than the target value. The noise rises by about 1 dB (A) under reverse installation.

5. The air volume in normal ventilation mode is basically the same as the air volume in energy recovery mode

6. The energy recovery efficiency test should be performed according to the method specified in Appendix 4 of JIS B 8628 (2003). The test environmental conditions should be subject to the winter and summer conditions specified in Table 1 and Table 2 of JIS B 8628 (2017). Other test methods should be subject to JIS B 8628 (2003)





Safety is verified by various standards including IEC (report no. 230106103GZS-001), UKCA (report no. 230106101GZU-001) and CE (report no. 230106101GZU-001) ^UKCA and CE reports are as reference only. They are only applicable to European model



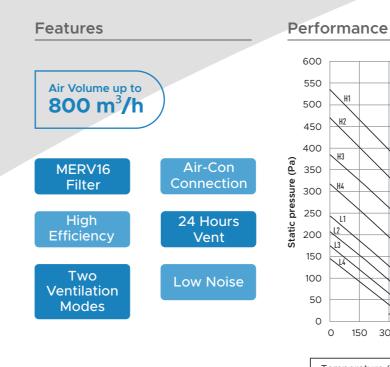
## **Energy Recovery Ventilator FV-65ZY1**





**Replacement Filter** Part No.: FV-FP65ZY1 Cleaning period: once per month Replacement period: every 4 to 6 months

Performance


Safety is verified by various standards including IEC (report no. 230106103GZS-001), UKCA (report no. 230106101GZU-001) and CE (report no. 230106101GZU-001) ^UKCA and CE reports are as reference only. They are only applicable to European model FV-65ZY1G.

### **Energy Recovery Ventilator FV-80ZY1**






**Replacement Filter** Part No.: FV-FP80ZY1 Cleaning period: once per month Replacement period: every 4 to 6 months



#### Dimensions

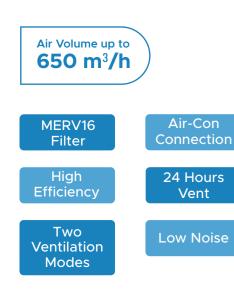


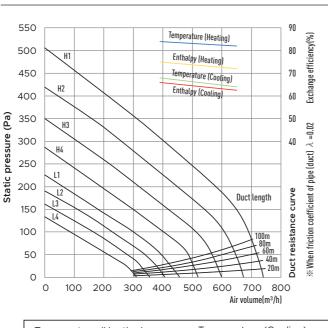
#### Model: FV-80ZY1

| Voltage   | Notch | Notch Static Pressure (Pa) | Air Volume<br>(m³/h) | Input Power<br>(W) | Temperature Exchange<br>Efficiency (%) |         | Enthalpy Exchange<br>Efficiency (%) |         | Noise<br>(dB(A)) | Applicable<br>duct diameter | Net Weight |
|-----------|-------|----------------------------|----------------------|--------------------|----------------------------------------|---------|-------------------------------------|---------|------------------|-----------------------------|------------|
| & Hz      |       |                            |                      |                    | Cooling                                | Heating | Cooling                             | Heating |                  | duct diameter               | (kg)       |
| 230V-50Hz | Hi    | 150                        | 800                  | 494                | 63                                     | 83      | 63.5                                | 73      | 45               | Ø250                        | 60         |
|           | Lo    | 54                         | 480                  | 212                | 73                                     | 85      | 68                                  | 75      | 35               | 0230                        | 00         |

1. The input power and exchange efficiency are the values measured under the standard air volume.

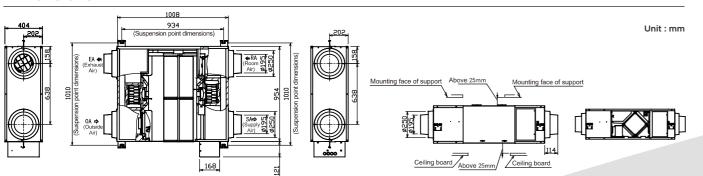
2. The above specification are the values measured under the factory set.


3. The power indicated on the name plate is the maximum value under the static pressure of 0 Pa.


4. The noise is measured 1.5 m directly below the center of the energy recovery ventilator. The noise value of the product is measured in a full anechoic chamber.

Under actual conditions, due the impact of ambient sound, the noise value will be greater than the target value. The noise rises by about 1 dB (A) under reverse installation 5. The air volume in normal ventilation mode is basically the same as the air volume in energy recovery mode

6. The energy recovery efficiency test should be performed according to the method specified in Appendix 4 of JIS B 8628 (2003). The test environmental conditions should be subject to the winter and summer conditions specified in Table 1 and Table 2 of JIS B 8628 (2017). Other test methods should be subject to JIS B 8628 (2003).


Features





Temperature (Cooling) Temperature (Heating) Enthalpy (Heating) Enthalpy (Cooling)

#### Dimensions



#### Model: FV-65ZY1

|   | Voltage<br>& Hz Not | Notch | Static Pressure<br>(Pa) | Air Volume<br>(m <sup>3</sup> /h) | Input Power<br>(W) |         | e Exchange<br>hcy (%) |         | Exchange<br>ncy (%) | Noise<br>(dB(A)) | Applicable duct diameter | Net Weight<br>(kg) |
|---|---------------------|-------|-------------------------|-----------------------------------|--------------------|---------|-----------------------|---------|---------------------|------------------|--------------------------|--------------------|
|   |                     |       | (Pd)                    | (1171)                            | (vv)               | Cooling | Heating               | Cooling | Heating             |                  | ulameter                 | (kg)               |
|   | 20) ( 50) -         | Hi    | 150                     | 650                               | 441                | 64      | 82                    | 62.5    | 72                  | 45               | <i>a</i> 200             | 10                 |
| 2 | 30V-50Hz            | Lo    | 54                      | 390                               | 180                | 68      | 84                    | 66      | 75                  | 34               | Ø200                     | 48                 |

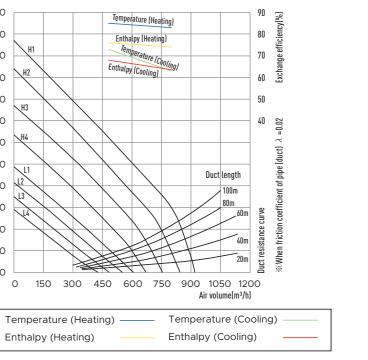
1. The input power and exchange efficiency are the values measured under the standard air volume

2. The above specification are the values measured under the factory set.

3. The power indicated on the name plate is the maximum value under the static pressure of 0 Pa.

4. The noise is measured 1.5 m directly below the center of the energy recovery ventilator. The noise value of the product is measured in a full anechoic chamber

Under actual conditions, due the impact of ambient sound, the noise value will be greater than the target value. The noise rises by about 1 dB (A) under reverse installation 5. The air volume in normal ventilation mode is basically the same as the air volume in energy recovery mode


6. The energy recovery efficiency test should be performed according to the method specified in Appendix 4 of JIS B 8628 (2003). The test environmental conditions should be subject to the winter and summer conditions specified in Table 1 and Table 2 of JIS B 8628 (2017). Other test methods should be subject to JIS B 8628 (2003).





Safety is verified by various standards including IEC (report no. 230106103GZS-001), UKCA (report no. 230106101GZU-001) and CE (report no. 230106101GZU-001) ^UKCA and CE reports are as reference only. They are only applicable to European model FV-80ZY1G.





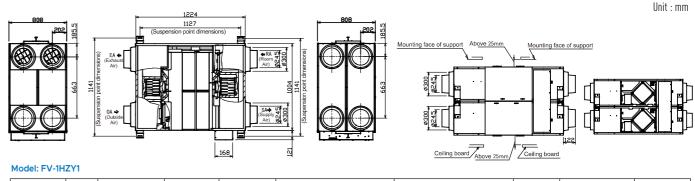
Unit : mm

## **Energy Recovery Ventilator** FV-1KZY1






**Replacement Filter** Part No.: FV-FP1KZY1 Cleaning period: once per month Replacement period: every 4 to 6 months




Safety is verified by various standards including IEC (report no. 230106103GZS-001), UKCA (report no. 230106101GZU-001) and CE (report no. 230106101GZU-001) ^UKCA and CE reports are as reference only. They are only applicable to European model FV-1KZY1G.

# **Energy Recovery Ventilator** FV-1HZY1



#### Dimensions



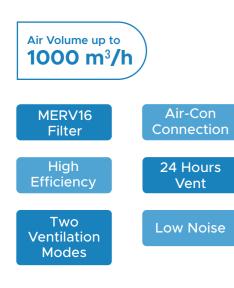
|                 | 211                        |                         |                        |                                                                 |                                                                                           |                                                                                                                                                                         |                                                                                                                                                                                                                |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                               |
|-----------------|----------------------------|-------------------------|------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Voltage<br>& Hz | Notch                      | Static Pressure<br>(Pa) |                        |                                                                 | Temperature Exchange<br>Efficiency (%)                                                    |                                                                                                                                                                         | Enthalpy Exchange<br>Efficiency (%)                                                                                                                                                                            |                                                                                                                                                                                                                               | Noise<br>(dB(A))                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                 | Net Weight<br>(kg)                                                                                                                                                                                                            |
|                 |                            |                         | (,,                    |                                                                 | Cooling                                                                                   | Heating                                                                                                                                                                 | Cooling                                                                                                                                                                                                        | Heating                                                                                                                                                                                                                       | (0.2(.1))                                                                                                                                                                                                                                                                 | diameter                                                                                                                                                                                                                        | (                                                                                                                                                                                                                             |
|                 | Hi                         | 130                     | 1500                   | 987                                                             | 63                                                                                        | 83                                                                                                                                                                      | 63.5                                                                                                                                                                                                           | 73                                                                                                                                                                                                                            | 49                                                                                                                                                                                                                                                                        | 0250                                                                                                                                                                                                                            | 110                                                                                                                                                                                                                           |
| UV-50HZ         | Lo                         | 48                      | 900                    | 430                                                             | 73                                                                                        | 85                                                                                                                                                                      | 68                                                                                                                                                                                                             | 75                                                                                                                                                                                                                            | 41.5                                                                                                                                                                                                                                                                      | 0250                                                                                                                                                                                                                            | 116                                                                                                                                                                                                                           |
|                 | /oltage<br>& Hz<br>0V-50Hz | Notch   & Hz   OV-50Hz  | Notch (Pa)   W-50Hz Hi | Notch     (Pa)     (m³/h)       OV-50Hz     Hi     130     1500 | & Hz     Notent     (Pa)     (m³/h)     (W)       OV-50Hz     Hi     130     1500     987 | Voltage<br>& Hz     Notch     Static Pressure<br>(Pa)     Air Volume<br>(m³/h)     Input Power<br>(W)     Efficien       0V-50Hz     Hi     130     1500     987     63 | Voltage<br>& Hz     Notch     Static Pressure<br>(Pa)     Air Volume<br>(m³/h)     Input Power<br>(W)     Efficiency (%)       Cooling     Heating       DV-50Hz     Hi     130     1500     987     63     83 | Voltage<br>& Hz     Notch     Static Pressure<br>(Pa)     Air Volume<br>(m <sup>3</sup> /h)     Input Power<br>(W)     Efficiency (%)     Efficiency (%)       OV-50Hz     Hi     130     1500     987     63     83     63.5 | Voltage<br>& Hz     Notch     Static Pressure<br>(Pa)     Air Volume<br>(m³/h)     Input Power<br>(W)     Efficiency (%)     Efficiency (%)       Cooling     Heating     Cooling     Heating       OV-50Hz     Hi     130     1500     987     63     83     63.5     73 | Voltage<br>& Hz Notch Static Pressure<br>(Pa) Air Volume<br>(m³/h) Input Power<br>(W) Efficiency (%) Efficiency (%) Efficiency (%)   Cooling Heating Cooling Heating Cooling Heating   OV-50Hz Hi 130 1500 987 63 83 63.5 73 49 | Voltage<br>& Hz Notch Static Pressure<br>(Pa) Air Volume<br>(m <sup>3</sup> /h) Input Power<br>(W) Efficiency (%) Efficiency (%) Noise<br>(dB(A)) Applicable duct<br>diameter   OV-50Hz Hi 130 1500 987 63 83 63.5 73 49 Ø250 |

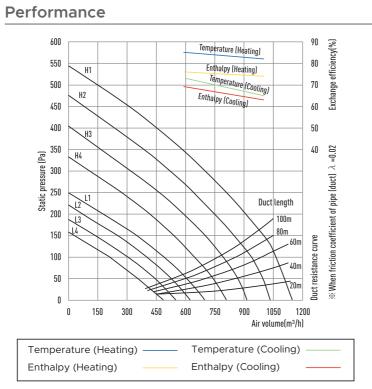
1. The input power and exchange efficiency are the values measured under the standard air volume.

2. The above specification are the values measured under the factory set.

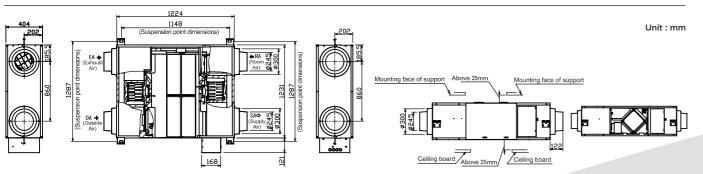
3. The power indicated on the name plate is the maximum value under the static pressure of 0 Pa.

4. The noise is measured 1.5 m directly below the center of the energy recovery ventilator. The noise value of the product is measured in a full anechoic chamber. Under actual conditions, due the impact of ambient sound, the noise value will be greater than the target value. The noise rises by about 1 dB (A) under reverse installation


5. The air volume in normal ventilation mode is basically the same as the air volume in energy recovery mode


6. The energy recovery efficiency test should be performed according to the method specified in Appendix 4 of JIS B 8628 (2003). The test environmental conditions should be

subject to the winter and summer conditions specified in Table 1 and Table 2 of JIS B 8628 (2017). Other test methods should be subject to JIS B 8628 (2003).


Features







Dimensions



#### Model: FV-1KZY1

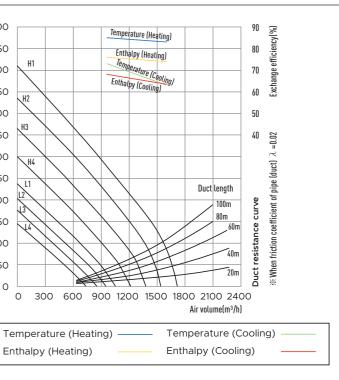
| Voltage<br>& Hz | Notch | Static Pressure<br>(Pa) | Air Volume<br>(m³/h) | Input Power<br>(W) | Temperature Exchange<br>Efficiency (%) |         | Enthalpy Exchange<br>Efficiency (%) |         | Noise<br>(dB(A)) | Applicable duct diameter |      |
|-----------------|-------|-------------------------|----------------------|--------------------|----------------------------------------|---------|-------------------------------------|---------|------------------|--------------------------|------|
|                 |       |                         |                      |                    | Cooling                                | Heating | Cooling                             | Heating |                  | diameter                 | (kg) |
| 230V-50Hz       | Hi    | 150                     | 1000                 | 578                | 65                                     | 82      | 63                                  | 74      | 46               | Ø250                     | 64   |
|                 | Lo    | 54                      | 600                  | 235                | 73                                     | 85      | 69                                  | 76      | 36               |                          |      |

1. The input power and exchange efficiency are the values measured under the standard air volume.

2. The above specification are the values measured under the factory set.

3. The power indicated on the name plate is the maximum value under the static pressure of O Pa.

4. The noise is measured 1.5 m directly below the center of the energy recovery ventilator. The noise value of the product is measured in a full anechoic chamber. Under actual conditions, due the impact of ambient sound, the noise value will be greater than the target value. The noise rises by about 1 dB (A) under reverse installation


5. The air volume in normal ventilation mode is basically the same as the air volume in energy recovery mode

6. The energy recovery efficiency test should be performed according to the method specified in Appendix 4 of JIS B 8628 (2003). The test environmental conditions should be subject to the winter and summer conditions specified in Table 1 and Table 2 of JIS B 8628 (2017). Other test methods should be subject to JIS B 8628 (2003).





Safety is verified by various standards including IEC (report no. 230106103GZS-001), UKCA (report no. 230106101GZU-001) and CE (report no. 230106101GZU-001) ^UKCA and CE reports are as reference only. They are only applicable to European model FV-1HZY1G.





# REFRESH INDOOR AIR FOR YOUR COMFORT ALWAYS

- Deodorization
- Inhibiting Bacteria

Œ

- Virus
- Mold
- Allergen



Incorporates nanoe<sup>™</sup> teo

aire FV-15CSD1

In our daily life, there are various odors and smells generated from indoor activities that may affect our comfort. Also, the pollutants we brought in from outdoor may have inverse impacts to the residents, while the mold grow fast in humid seasons would cause allergic problems to some individuals.



Purify the indoor air with the unique nanoe<sup>™</sup>X technology by Air-e (nanoe™X Generator)





Walk-in Closet



Living Room







Rest Room





Guest Room



Meeting Room

Nursery





Shoe Cloakroom







Changing Room



Bedroom

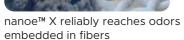


Elderly House



Reception

nanoe<sup>™</sup> are long-life water-wrapped capsules with plentiful Hydroxide (OH•) radicals created from water molecules. Their sizes are only 5-20nm that can penetrate the fabrics thoroughly and reach in far corners to absorb viruses and allergens.


nanoe<sup>™</sup> X device generates 4.8 trillion of OH• radicals per second that is 10 times to nanoeTM device. OH- radical possesses the characteristics of inhibiting viruses, bacteria, odors and allergens, by removing hydrogen (H) from them. The more the OH radical, the higher effectiveness of anti-virus power.

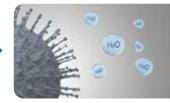
#### 1 nm (nanometer) = 0.000000001 m (one billionth of meter) How nance<sup>™</sup>X inhibit pollutants?



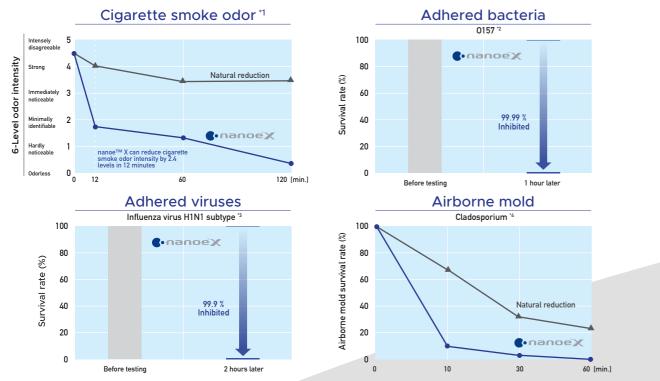
nanoe™ X reliably

reaches viruses




OH• radicals break down odor-causing substances

OH• radicals transform


virus proteins



Odor is eliminated \*1



Virus activity is inhibited \*3



\*1 <Cigarette smoke odor> [Test organization] Panasonic Product Analysis Center [Test method] Verified using the 6-level odor intensity scale method in an approximately 23m<sup>3</sup> sized test room [Test method] nanoe™ released [Test substance] Surface-attached cigarette smoke odor [Test result] Odor intensity reduced by 2.4 levels in 12 min. (4AA33-160615-N04)

\*2 <Adhered bacteria (O157)> [Test organization] Japan Food Research Laboratories [Test method] Measured the number of bacteria adhered to a cloth in an approximately 45L

2 Source obstant (or): These organization separation of research cardinations (in source) and the organization of the source to a cloth in an approximately 1m<sup>3</sup> sized airtight test room [Test method] nanoe<sup>™</sup> released [Test substance] Adhered virus [Test result] Inhibited by at least 99.9% in 2 hours (21 0084 1)

\*4 <Airborne mold (Cladosporium)> [Test organization] Japan Food Research Laboratories [Test method] Measured the number of mold altered in an approximately 23m<sup>3</sup> sized test room [Test method] nanoe™ released [Test substance] Airborne mold [Test result] Inhibited by at least 99% in 1 hour (205061541-001)

### FV-15CSD1

- nanoe<sup>™</sup> X Purification
- Silent Operation
- Low Power Consumption
- Easy Installation
- Contemporary Design
- Compact Size



#### **SPECIFICATION**

| Model     | Voltage |      | Air Vo | olume | Consumption | Noise   | Weight |
|-----------|---------|------|--------|-------|-------------|---------|--------|
| model     | [V]     | [Hz] | [m3/h] | [CFM] | [W]         | [dB(A)] | [kg]   |
|           | 220     | 50   | 15     | 8.8   | 4           | 23.5    |        |
|           |         | 50   | 16     | 9.4   | 4           | 25.5    |        |
| FV-15CSD1 | 230     | 60   | 16     | 9.4   | 4           | 25.5    | 1.1*   |
|           | 240     | 50   | 17     | 10    | 4           | 27      |        |

• The value of air volume, power consumption and noise are specified at static pressure 0 Pa.

- The value of air volume is the mean value and a tolerance of ±10% is allowed.
- The value of noise level is A weight average sound pressure level, the mean value is measured by our company. A tolerance of +3dB/-7dB is allowed. The noise is measured at 1m apart from the left, the front and the below of the product.
- Condition for generating nanoe<sup>™</sup> X

- Room temperature : about 5°C ~ 40°C (Dew point temperature more than 2°C) - Relative humidity : about 30% ~ 85%

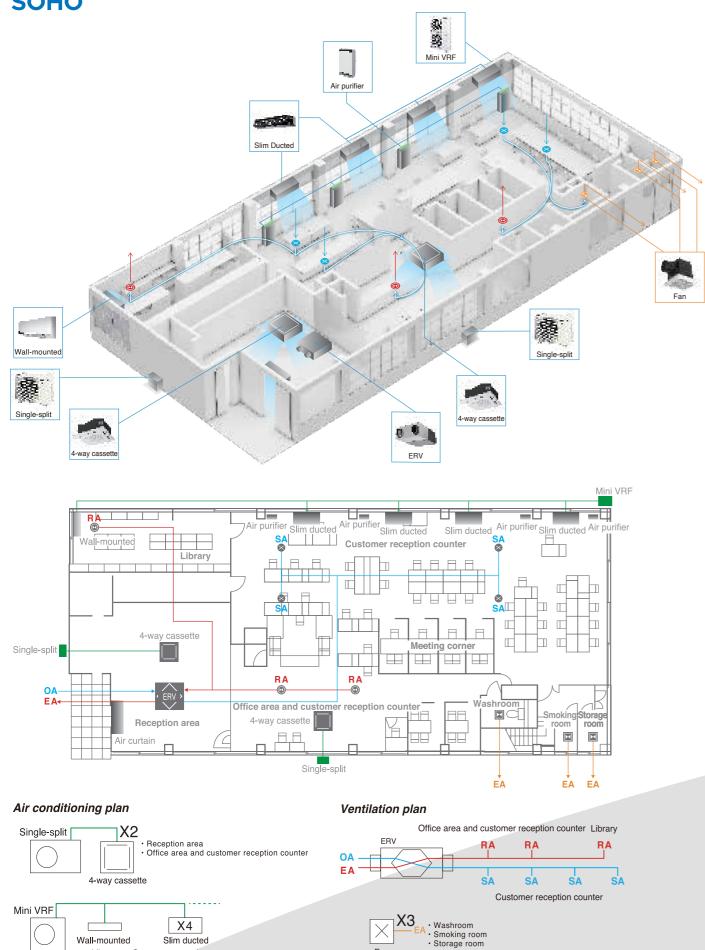
nanoe™ X is generated using the air in the room, and its amount is subject to the temperature and humidity.

#### DISCLAIMER

- Data provided regarding the effectiveness of nanoe<sup>™</sup> X and nanoe<sup>™</sup> have been obtained through experiments under special conditions using devices which generate electrostatic atomized water, and have not been tested through commercial products with the devices incorporated in them.
- · Deodorization effect varies according to the environment (temperature and humidity), operation time, odor, and fabric types. It does not eliminate toxic substances in cigarettes (carbon monoxide, etc.). Odors that are continuously generated (e.g. building material odors and pet odors) are not completely eliminated. Results may vary based on usage, and seasonal/environmental variables (temperature and humidity). nanoe™ X and nanoe™ inhibit activity or growth of viruses, but do not prevent infection.
- Individual results may vary based on usage, and environmental variables (temperature and humidity).

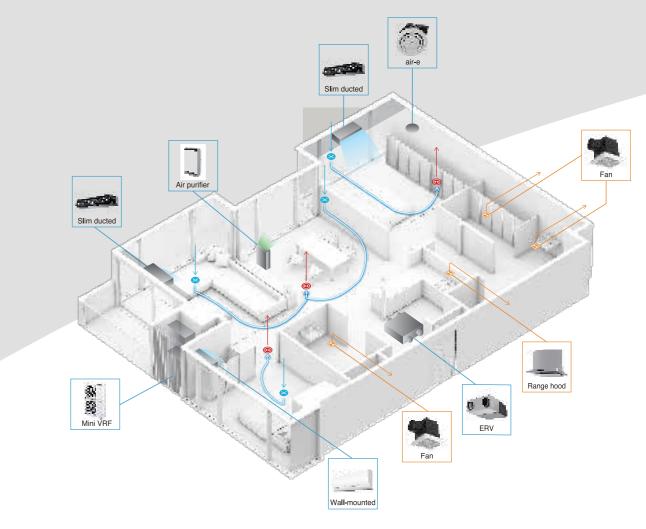
Panasonic Panasonic Ecology Systems Co., Ltd. http://www.plshk.p

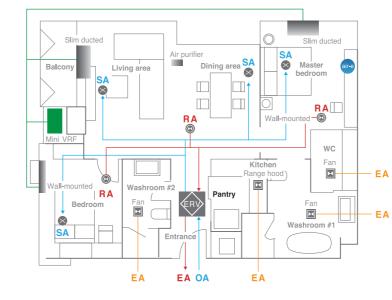
Virus






\* The weight of the unit with power cord / plug is 1.3 Kg

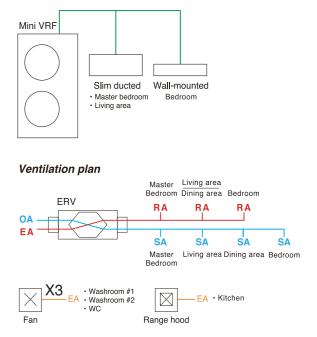

rinted in Hona Kona 09 21


# SOHO



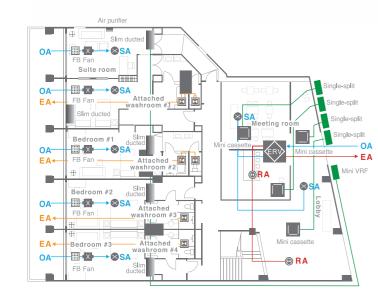
Fan

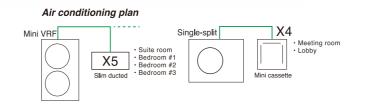
# CONDOMINIUM

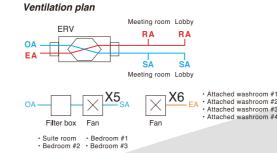





Library Customer reception counter


Please consult your Panasonic representative about a plan that matches your particular environment.


Air conditioning plan




# **BOUTIQUE HOTEL**

# 行 Mini VRF Slim ducte Air purifier 100 9 1 Slim ducted Fan Fan . P Fan Filter box Ø Filter box







# **Case Study**

nanoe™ X technology helps S P Setia create a safer environment in their lifestyle mall and sales galleries



S P Setia Berhad - an award-winning public listed company and a market leader in property development in Malaysia was looking to create a safer environment for customers and employees by keeping indoor air safe against the invisible threat of the COVID-19 virus. The company found the solution in nanoe™ X technology, a Panasonic's patented airpurification technology which is embedded in Panasonic air quality devices such as air-e nanoe™ X generator and air conditioners.

### Challenge: Keeping Indoor Air Safe in the New Normal



COVID-19 virus spreads via airborne particles and droplets. A crucial element to keep everyone safe is the indoor air quality. S P Setia proactively looked for measures to create a safer environment, free of any form of pathogens to give their customers and employees the confidence to resume working and living in the new normal.

# Solutions & Technology Applied

S P Setia turned to Panasonic to fully fit out their commercial spaces, sales galleries, and offices with Panasonic's patented nanoe<sup>™</sup> X air purification technology indoor air solutions.

Panasonic nanoe™ X technology offers the benefits of hydroxyl radicals (also known as OH radicals) contained in water and has the capacity to inhibit bacteria, viruses, and other pollutants as well as deodorise odours. The nano-sized particles of nanoe™ X allow for deep penetration into soft furnishings like fabric, sofas, and carpets. nanoe™ technology is proven to effectively inhibit more than 99%\* of novel coronavirus.

The Panasonic air-e nanoe<sup>™</sup> X generator is installed in all D'Network's indoor areas, which include all F&B outlets,

retail shops, clinic, kindergarten as well as the grocer store. Shoppers, diners, and visitors of D'Network can now go about with ease without worrying about contaminated air or surfaces.



air-e nanoe<sup>™</sup> X generator installed in a clinic waiting area.



air-e nanoe™ X generator installed in one of the outlets in D' Network F&B.



air-e nanoe<sup>™</sup> X generator installed in a kindergarten located in D' Network.



air-e nanoe™ X generator installed in the grocer store.



air-e nanoe<sup>™</sup> X generator installed in the spa outlet.



D'Network offers safer air to patrons in the entire D'Network's indoor area.



nanoe™ X technology enables safe dining outexperience in the new normal.



air-e nanoe<sup>™</sup> X generator installed in D'Network is powered by solar and is in full operation for 24 hours.

Addressing property buyers' safety, S P Setia also invested in over 800 units of Panasonic's ceiling mounted air-e nanoe™ X generator in its 29 sales galleries nationwide to create safer indoor air - where visitors can have peace of mind when visiting S P Setia's property sales galleries.





air-e nanoe™ X generator installed in Setia Alam Welcome Centre.

air-e nanoe<sup>™</sup> X generator installed in Setia Eco Park Sales Gallery.



Cassette air conditioner equipped with nanoe<sup>™</sup> X installed in Setia Cassette air conditioner equipped with nanoe<sup>™</sup> X Alam Welcome Centre's meeting room.

As a caring organization and employer, we are responsible to ensure a safe and healthy environment for our customers and employees. We chose Panasonic's nanoe<sup>™</sup> X technology as we believe in its track record of providing good air quality through its appliances, which have undergone rigorous lab tests with proven results,

S P Setia's deputy president and chief operating officer Datuk Seri Koe Peng Kang says.

#### **Products Installed**



air-e nanoe<sup>™</sup> X generator (1,000 units)



air-e nanoe™ X generator device in Setia Eco Park Sales Gallery.

In S P Setia HQ and offices, 20 units of Panasonic 4-way cassette air conditioners were installed in the meeting rooms and working areas to provide better indoor air for employees. The Panasonic 4-way cassette provides a 360° wide airflow that cools large spaces evenly while its flat horizontal design fits neatly into the ceiling. The air conditioners are also equipped with nanoe<sup>™</sup> X to provide healthy, clean air at work so employees can stay protected throughout the day.



Cassette air conditioner (20 units)

## **Case Study**

#### Comfortable homes with enhanced indoor air quality



MKH Property Ventures Sdn. Bhd., a joint venture company established in 2018 by MKH Berhad and Panasonic Homes Malaysia Sdn. Bhd. from Panasonic Homes Group. This collaboration leverages MKH Berhad's know-how in the real estate development business coupled with PanaHome's technology, construction expertise, and ideas for quality living to build sustainable homes.

**MIRAI Residences** 

Kajang, Selangor, Malaysia

MKH Property Ventures Sdn. Bhd.

٥Щ٥

Residential

Location :

Application :

Client:

One of the notable projects under this partnership is the MIRAI Residences in Kajang 2, Selangor. It is a Japanese-inspired tranquil living space boasting a 24-hour 6 tier security system and a 159,000 sqft facilities podium. MIRAI Residences integrates 4 unique values into its interior design concept - Lifestyle, Function, Future & Design. The Lifestyle value refers to the interior aspect of a living space which includes colours and materials tailored to the current lifestyle of young adults, while the Function value gives each space a well thought-out functionality to perform daily actions. The Future value of interior design anticipates the household's needs, envisioning space for both now and into the future. Finally, the Design value improves the space by making the living space multifunctional and by promoting good air quality while aesthetically pleasant to be in.

#### **Challenge: Creating Comfortable Living Spaces with Quality Air**

More and more people are becoming aware of the importance of how the wellness of a building can help to promote better health and the wellbeing of its occupants. MKH Property Venture Sdn. Bhd. recognizes this trend and acknowledges the importance of having quality indoor air. Together, they want to enhance the wellness feature of their development to provide residences with a comfortable indoor environment safe for everyday living with improved air quality and sustainable energy solutions.

# Solutions & Technology Applied

To meet their objectives, MKH Property Venture Sdn. Bhd. equipped all the units of MIRAI Residences with Panasonic's air quality solutions to bring better living spaces to homeowners through optimum ventilation and quality indoor air. MIRAI Residences is the first residential property in Malaysia to provide Quality Air for Life (QAFL) with the efficient Energy Recovery Ventilator (ERV) system.

Panasonic's ERV system provides ample ventilation in homes to ensure an optimal amount of fresh air indoors all day long while exhausting stale air, moisture, and indoor pollutants. The system is equipped with a high-efficiency PM2.5 filter to keep fine particles out of the indoor environment. The simultaneous process of supplying and exhausting indoor air via the ERV system allows heat and humidity to be exchanged, providing cooler air indoors and reducing the workload of air conditioners to cool the space, thus helping homeowners to save on electricity and costs.

Every unit in MIRAI Residences is installed with Panasonic nanoe™ X air conditioners to provide residents a comfortable. cooling, and healthy living space with purified air. The air conditioners are also embedded with a network adaptor, providing convenience to control the air conditioner from anywhere via Panasonic Comfort Cloud App. This feature also enables homeowners to switch on nanoe™ mode even without cooling operation to actively clean the air and inhibit pollutants when they are away.



Actual show unit photo of MIRAI Residences. Quality air in every living space.

Panasonic nanoe™ X technology offers the benefits of hydroxyl radicals (also known as OH radicals) contained in water which has the capacity to inhibit bacteria, viruses, and other pollutants as well as deodorise odours. The nano-sized particles of nanoe<sup>™</sup> X allow for deep penetration into soft furnishings like fabric, sofas, and carpets. nanoe<sup>™</sup> technology is proven to effectively inhibit more than 99%\* of novel coronavirus.

MIRAI Residences also adopted Panasonic PURETECH air filtration and ventilation system to filter out polluted air, haze, pollen and dust as well as smaller particles such as PM2.5. The system also effectively maintains good air flow and circulation of natural cool air to keep the living space naturally cool and clean.

From the onset of the COVID-19 pandemic, we knew that a well-ventilated indoor space was critical in helping reduce the risk of exposure to the virus, especially over a prolonged period. Panasonic's nanoe<sup>™</sup> X technology is a natural choice for us to address the demands for comfortable homes with better indoor air quality in the new normal

said MKH Bhd. Group Managing Director, Tan Sri Eddy Chen Lok Loi.

#### **Products Installed**



Energy recovery ventilator (940 units)

Actual show unit photo of MIRAI Residences. Air conditioner installed in every unit of MIRAI Residences.



Wall-mounted air conditioner (2,992 units)



Puretech (556 units)

# A Safer working and learning space with nano<sup>™</sup> X Technology





air-e nanoe™ X generator installed in a campus' cafeteria.



air-e nanoe<sup>™</sup> X generator installed in a meeting space.

47 |